机器学习实战ByMatlab(1):KNN算法

摘要

KNN 算法其实简单的说就是“物以类聚”,也就是将新的没有被分类的点分类为周围的点中大多数属于的类。它采用测量不同特征值之间的距离方法进行分类,思想很简单:如果一个样本的特征空间中最为临近(欧式距离进

KNN 算法其实简单的说就是“物以类聚”,也就是将新的没有被分类的点分类为周围的点中大多数属于的类。它采用测量不同特征值之间的距离方法进行分类,思想很简单:如果一个样本的特征空间中最为临近(欧式距离进行判断)的K个点大都属于某一个类,那么该样本就属于这个类。这就是物以类聚的思想。

当然,实际中,不同的K取值会影响到分类效果,并且在K个临近点的选择中,都不加意外的认为这K个点都是已经分类好的了,否则该算法也就失去了物以类聚的意义了。

KNN算法的不足点:

1、当样本不平衡时,比如一个类的样本容量很大,其他类的样本容量很小,输入一个样本的时候,K个临近值中大多数都是大样本容量的那个类,这时可能就会导致分类错误。改进方法是对K临近点进行加权,也就是距离近的点的权值大,距离远的点权值小。

2、计算量较大,每个待分类的样本都要计算它到全部点的距离,根据距离排序才能求得K个临近点,改进方法是:先对已知样本点进行剪辑,事先去除对分类作用不大的样本。

适用性:

适用于样本容量比较大的类域的自动分类,而样本容量较小的类域则容易误分

算法描述:

1、计算已知类别数据集合汇总的点与当前点的距离
2、按照距离递增次序排序
3、选取与当前点距离最近的K个点
4、确定距离最近的前K个点所在类别的出现频率
5、返回距离最近的前K个点中频率最高的类别作为当前点的预测分类

Python 实现

调用方式:

Matlab 实现

这里以一个完整实例呈现,代码如下:

可以看到,整个KNN算法的Matlab代码也就只有6行,比Python少很多,这其中要得益于Matlab成熟的矩阵计算和很多成熟的函数。

实际调用中,我们利用一个数据集进行测试,该数据集是由1000个样本的3维坐标组成,共分为3个类

首先可视化我们的数据集,看看它的分布:

第一维和第二维:可以清晰地看到数据大致上分为 3 类

第1维和第3维:从这个角度看,3类的分布就有点重叠了,这是因为我们的视角原因

画出3维,看看它的庐山真面目:

由于我们已经编写了KNN代码,接下来我们只需调用就行。了解过机器学习的人都应该知道,很多样本数据在代入算法之前都应该进行归一化,这里我们将数据归一化在[0,1]的区间内,归一化方式如下:

newData = (oldData-minValue)/(maxValue-minValue)

其中,maxValue为oldData的最大值,minValue为 oldData 的最小值。

同时,我们对于1000个数据集,采取10%的数据进行测试,90%的数据进行训练的方式,由于本测试数据之间完全独立,可以随机抽取10%的数据作为测试数据,代码如下:

当我们选择K为4的时候,准确率为:97%

KNN进阶

接下来我们将运用KNN算法实现一个手写识别系统,训练数据集大约2000个样本,每个数字大概有200个样本
测试数据大概有900个样本,由于每个样本都是一个32×32的数字,我们将其转换为1×1024的矩阵,方便我们利用KNN算法
数据如下:

由于数据量比较大,加载数据的时候回花一点时间,具体代码如下:

不同的K识别准确率稍有不同,当K为4的时候,准确率为 98.31%

14 收藏 2 评论
IT家园
IT家园

网友最新评论 (0)

发表我的评论
取消评论
表情